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A B S T R A C T

This article discusses options for evaluation of patent and/or patent family classification algorithms by means
of ‘‘gold standards’’. It covers the creation criteria, and desirable attributes of evaluation mechanisms, then
proposes an example gold standard, and discusses the results of applying the evaluation mechanism against
the proposed gold standard and an existing commercial implementation.

1. Introduction

There are a number of problems in the strategic patent decision
making and portfolio management domain where artificial intelligence
techniques can be applied. One of the more common is that of mapping
patent assets to technologies, for example to perform patent land-
scaping, or for reporting on the contents of your own, or competitor
portfolios. This is also one of the hardest tasks to perform mechanically,
and has been identified as a source of friction in strategic patent
decision making [1].

Conventional ‘‘mandrolic’’, or semi-automated solutions typically
revolve around performing a boolean search over the assets to discover
a superset of the assets to be identified, then manually reviewing
returned results to determine if each individual asset falls into the
desired class.

There are a number of compromises involved in this approach —
predominantly related to the time taken to perform a thorough review
of the technology domain, or the cost of outsourcing this work to
external experts.

In addition there is also the issue of inconsistency of results from
month to month, as the output of manual review by different individu-
als can be highly variable. In a study conducted by Elextrolux [2] across
29 outsourced patent search service providers it was found that there
was a high degree of variability in the results. The requested search
was ‘‘LED lighting of handle for refrigerator’’, which was believed to
be precise enough to make interpretation of scope a minor factor. In
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total, across the 29 providers there were 194 distinct patent families
identified, of which 114 were deemed to be relevant to the scope of
the query by independent review. Within the relevant families 19 were
identified as being highly relevant, and the number of those identified
by a single provider varied from one to twelve, with a median of 4 and
a mean of 5.2.

Because of these factors, automation of this process would be ad-
vantageous to the industry, resulting in more consistent reporting, and
freeing up subject matter experts to work on higher value projects.
As this article will show, measuring the accuracy of Machine Learning
algorithms in a neutral and representative way poses challenges, even
for experts in the field. This makes it difficult to answer questions such
as ‘‘which operations are viable to automate?’’, and ‘‘how does the
accuracy of algorithms compare to manual work?’’.

This article proposes an approach for generating gold standards for
machine classification of patents, and presents one such example. It
then describes a methodology to test against that gold standard, and
presents the results of evaluation of a commercially available system
against it. The gold standard is intended to be a representative reflec-
tion of a patented technology, such that it includes a number of positive
labelled patents that cover the technology, and a number of negative
labelled patents that do not, but are close enough in content that they
would be challenging for an algorithm to identify. The technologies
selected should be representative of real classification challenges faced
by practitioners.
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Table 1
Most frequent class codes in the 𝑇⊕ set (positive labelled training set), and their coverage - |𝑇⊕∩𝐶|

|𝑇⊕ |
, for class code 𝐶.

Technology Class code #1 Class code #2 Class code #3

Hybrid transmission B60W 10/08 14.2% B60K 6/445 13.9% B60K 6/365 13.4%
Overhead cameras B60R 1/00 62.2% H04N 7/18 31.5% B60R 11/04 15.9%
Pre-chamber combustion F02B 19/12 35.2% F02B 19/18 14.6% F02P 13/00 14.0%
Selective catalytic reduction F01N 3/2066 51.4% F01N 2610/02 38.9% F01N 3/208 20.2%
Tailgate actuation E05Y 2900/546 38.0% E05Y 2900/531 14.0% E05F 15/622 12.4%

Mean 40.2% 22.6% 15.2%

The term ‘‘gold standard’’ is somewhat ambiguous, due to its use
in many fields and contexts, but Aroyo and Welty [3] provide a
description which covers many cases: ‘‘Gold standards exist in order to
train, test, and evaluate algorithms that do empirical analysis. Humans
perform the same analysis on small amounts of example data to pro-
vide annotations that establish the truth. This truth specifies for each
example what the correct output of the analysis should be. Machines
can learn (in the machine-learning sense) from these examples, or
human programmers can develop algorithms by looking at them, and
the correctness of their performance can be measured on annotated
examples that were not seen during training’’.

In the following text, we use the binary classification convention of
denoting the data labelled as positive (examples of in-scope patents)
with 𝑋⊕, and those labelled as negative (counter-examples) with 𝑋⊖,
where 𝑋 is the labelled set.

We will also describe the processes in set notation for brevity,
though restrict the use to just ∪ (union), ∩ (intersection), ⧵ (set dif-
ference), and |𝑋| (set cardinality).

2. Prior work

2.1. Existing gold standards

There exist a number of gold standards and more general test
datasets for evaluation of machine classification, such as those pub-
lished in the OpenML3 online database of labelled machine learning
test data. These datasets cover a wide range of topics, but are largely
numeric in content, and do not include rich patent data labelled with
the technologies which they cover.

There also exists a series of gold standard datasets in the patent do-
main, the IPC classifications from CLEF-IP,4 however they are optimised
for evaluation of other types of algorithm, chiefly the detection of prior
art.

2.2. Using class codes for evaluation

There have been attempts to use the examiner class code informa-
tion in CLEF-IP, or wider patent datasets to evaluate classification al-
gorithms [4,5], and while the class code labels are plentiful and widely
available there exists a question over their suitability for evaluation
of this class of problem – the mapping of patents to industry-relevant
technologies. Clearly class codes are a suitable gold standard for the
automation of the process of patent examiners assigning class codes to
applications, however the requirements of practitioners in the industry
– mapping their assets against technologies that are relevant to the
business – may differ.

In order for class codes to be representative of such real-world
problems they should resemble the scope and coverage of technol-
ogy definitions in use by practitioners in the field. To evaluate this
we consider some classes from the Cipher Automotive taxonomy of
technologies. This was co-developed with a number of well-known
companies in the automotive industry, and is widely used for patent

3 https://www.openml.org/.
4 http://ifs.tuwien.ac.at/~clef-ip/.

Table 2
The number of distinct class codes appearing in each set, and the intersection of the
class codes of the two sets. The percentage indicates the proportion of class codes
appearing in 𝑇⊕ (positive labelled training set) that also appear in 𝑇⊖ (negative labelled
training set)

Technology Unique class codes in

𝑇⊕ 𝑇⊖ 𝑇⊕ and 𝑇⊖
Hybrid transmission 956 2,265 245 25.6%
Overhead cameras 431 2,339 302 70.1%
Pre-chamber combustion 464 1,101 185 39.9%
Selective catalytic reduction 664 1,106 249 37.5%
Tailgate actuation 548 1,239 265 48.4%

Mean 613 1,389 249 44.3%

classification in that domain, so can be said to be a reasonable reflection
of common practice. Five technologies were selected at random from
the Cipher Automotive5 taxonomy, and their relationship to (CPC6)
class codes is observed. In the following text 𝑇 denotes the training
set manually constructed in order to train a classifier to the given
technology topic.

As can be seen in Table 1 there is no single class code that spans
every patent in 𝑇⊕ in any of these cases. The maximum being only
62.6%, and the mean being 40.2%. From Table 2 we can see that a
minimum of 25.6%, and mean of 44.3% of the class codes in 𝑇⊕ also
appear in 𝑇⊖.

Taken together this indicates that class codes do not discriminate
between technology domains at the level which is expected by prac-
titioners — the class codes are both too narrow in scope, such that
it requires many hundred codes to circumscribe an industry-relevant
technology; and too broad in that many of them span both the 𝑇⊕ and
𝑇⊖ sets.

It should be noted that the relationship to the older IPC class
codes was not evaluated, as IPC is essentially a subset of CPC. From
the World Intellectual Property Organization (WIPO) FAQs ‘‘CPC is
the Cooperative Patent Classification scheme used by the European
Patent Office (EPO) and the United States Patent and Trademark Office
(USPTO), which was jointly developed by the two Offices based in a
large part on the existing European Classification System (ECLA) and
on the USPC, respectively. It is based on the IPC, but it is much more
detailed.’’7

2.3. Cross validation

Outside of gold standards, another popular technique for measuring
classification accuracy is cross-validation [6]. Cross-validation has the
benefit that it requires no additional manual effort to evaluate the
accuracy, and it is a useful technique for evaluating classification
accuracy in the absence of external data. However, cross validation
suffers from the problem that the scope of the evaluation is bounded
by the training set, which is not guaranteed to reflect the domain as a
whole [7].

5 http://cipher.ai/automotive.
6 https://www.cooperativepatentclassification.org/.
7 https://www.wipo.int/classifications/ipc/en/faq/.

https://www.openml.org/
http://ifs.tuwien.ac.at/~clef-ip/
http://cipher.ai/automotive
https://www.cooperativepatentclassification.org/
https://www.wipo.int/classifications/ipc/en/faq/
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Even in the cases where it can be determined that the training set
is truly representative of the domain, there are well-known issues with
the inherent inaccuracies of the various cross-validation methods [8].
While these can be compensated for to a degree, they can be avoided
altogether with an independently created gold standard, against which
robust information retrieval characteristics can be calculated.

Equally it would not be reasonable to take an existing training set
from an academic or commercial system to use as a gold standard.
There will be some inherent bias towards the system under which it was
constructed, due the choices made by the operator to correct identified
errors during the training and evaluation cycle, unrepresentatively
penalising other systems to which it may be compared.

3. Desirable characteristics of a patent classification gold stan-
dard

A number of challenges are faced in the construction of a gold
standard for use in the evaluation of classification algorithms, including
those described by Aroyo and Welty [3], and those specific to the patent
domain.

To address these, the following criteria are proposed for a robust
gold standard in this domain:

Scope Defining a scope which is both clear enough to offer a reason-
able level of agreement between subject matter experts, and also
reflective of real-world use cases. An embodiment of this in the
patent domain could be a scope which clearly delineates patents
which cover a particular feature, which is relevant to licensing
activity.

Agreement Ideally the gold standard covering each topic would be
reviewed by multiple subject matter experts — allowing testing
against the consensus, most generous, and most narrow def-
initions. This requires a definition which is clear enough to
allow subject matter experts to independently reach the same
conclusion as to membership.

Diversity of technology Different patented technology areas have
quite differing characteristics in terms of variety of terminology,
density of class codes, and quantity of patents, so it is reasonable
to assume that different systems will perform with differing
degrees of accuracy against each. A good implementation of this
would be multiple gold standards covering different technolog-
ical areas, such as mechanical engineering, software, business
methods, semiconductors, and so on.

Size of dataset There is a tension between selecting technologies that
are precise enough to be representative of real requirements, yet
large enough that multiple experiments can be run without sub-
stantial overlap, and withholding enough data for the evaluation
to be robust and representative.

Challenging Classifying against the gold standard should be suffi-
ciently difficult that existing solutions cannot easily achieve
100% accuracy, which would render any comparison impos-
sible. If, for example a simple classification technique such
as naive bayes could achieve 100% accurate results then the
test is not sufficient to discriminate high from low performing
solutions.

Independent The gold standard should be created without reference
to any existing system, independently, and as far as possible
through manual research, to avoid systematic bias — such as the
preponderance of a small number of class codes. If during the
construction of the gold standard data, the person constructing
the set relies upon existing known metadata, then the data set
will be compromised by including an artificially easy to discover
feature.

Identification One of the more trivial though persistent problems in
patent data is the lack of standardisation of patent serial number
formatting. The gold standard should use whatever format is the
most widely understood. For example, the string ‘‘US10012345’’
may denote the US patent ‘‘US10012345B2’’ (Method and ap-
paratus for an icemaker adapter, 2001), or the US application
‘‘US10/012,345’’ (Multi-mode print data processing, 2015).

4. The process of creating the quantum computing gold standard

The quantum computing gold standard was created by Anthony
Trippe of Patinformatics.8

The summary is ‘‘Qubit Generation for Quantum Computing’’, and
the scope (i.e. the natural language definition of what technologies
were included, and what were excluded) was given as:

‘‘Qubit Generation for Quantum Computing refers to patents that
discuss the various means of generating qubits for use in a quantum
mechanics based computing system. Types of qubits included supercon-
ducting loops, topological, quantum dot based and ion-trap methods as
well as others. The excluded technologies are applications, algorithms
and other auxiliary aspects of quantum computing that do not mention
a hardware component, and hardware for other quantum phenomena
outside of qubit generation’’.

This scope was selected by Patinformatics as representative of a
real-world problem, and because they have significant experience of
analysing patents in the area [9].9 Because of this background knowl-
edge, the belief was that there would be a sufficient quantity of patent
families to allow the construction of a large enough gold standard. It
was also felt that the difficulty of identifying the patents in-scope (as-
in, those which cover technologies such that they fall into the class of
positives) would be challenging for machine processing, based on their
experiences of manually classifying the technology.

The source data was a mixture of existing known data, and manually
directed searching with manual review. During the process of creating
the gold standard data Patinformatics did not have access to Cipher,
as this could have skewed the selection process in favour of machine
processing over human review.

Patinformatics were compensated for their time by Aistemos to
allow open publication of the resulting data, however there is no other
relationship between the organisations.

The version of Cipher evaluated in this text predates the creation of
this gold standard, so there is no optimisation (for example of the text
embeddings used to generate the intermediate vectors) specific to this
data in the results.

Instructions for obtaining the data produced can be found in Sec-
tion 10.

5. Analysis of the gold standard data

The cardinality of the example gold standard created for this study
(|𝐺|) is 1429 EPO simple patent families, broken down as |𝐺⊕| =
435, and |𝐺⊖| = 994, these consist of 2282, and 2801 publications,
respectively.

In order to understand the contents of the gold standard further, we
can compare the members to the data presented in Section 2.2. Ideally
there should be a degree of similarity in the makeup, coverage, and
intersection of the class codes that is inline with real-world classifier
training sets. Some differences are expected, as the gold standard is by
definition a superset of the data required for accurate training, and the
quantum computing domain is likely to be different in terms of class

8 Patinformatics LLC, 565 Metro Place S. Suite 3033, Dublin, OH 43017,
USA, https://patinformatics.com/.

9 https://patinformatics.com/quantum-computing-report/.

https://patinformatics.com/
https://patinformatics.com/quantum-computing-report/
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Table 3
Most common class codes appearing the gold standard, and the proportion of families
in each set that include the class code.

Class code 𝐺⊕ coverage 𝐺⊖ coverage

B82Y 10/00 63.7% 4.2%
G06N 99/002 34.0% 4.8%
H01L 39/223 10.8% 0.5%
H04B 10/70 3.0% 5.3%
H04L 9/0852 1.4% 12.9%
H04L 9/0858 1.1% 4.2%
G04F 5/14 0.2% 7.0%
H03L 7/26 0.0% 7.1%
H04L 9/08 0.0% 6.1%
G04F 5/145 0.0% 5.2%

Table 4
The confusion matrix for binary classification.
Actual class Recognised as

Positive Negative

Positive 𝑡𝑝 𝑓𝑛
Negative 𝑓𝑝 𝑡𝑛

code coverage from automotive technologies, though the characteristics
should be broadly similar.

Table 3 shows the coverage of the most common class codes in the
gold standard data. This is broadly in line with the Overhead cameras
technology from the automotive data, though somewhat above the
mean at 63.7%, 34.0%, 10.8% for 𝐺 against 62.2%, 31.5%, 15.9% for
Overhead cameras.

For the gold standard the number of unique class codes in 𝐺⊕ is
596, in 𝐺⊖ is 1,403, and the number appearing in both is 130. The
intersection is lower than any examples from the automotive domain,
being almost half of the mean.

Without a more comprehensive study of the distribution of class
codes across different training sets in different technologies it is not
possible to be confident if this is reflective of the technology area,
or indicative of some minor bias in the construction of the data. The
results are similar enough to the automotive technologies to not cause
concern about intrinsic problems in the construction of the data — for
example class codes that are uncommonly discriminative.

6. Quantifying classifier performance

Demšar [10] identifies the most frequently used information re-
trieval metrics used in the analysis of supervised learning classifier
performance in the literature as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝐹1, and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, with
AUC also being used, though less often.

These metrics are defined in terms of the binary classifier confusion
matrix, shown in Table 4, where 𝑡𝑝 are true positives (correctly iden-
tified positives), 𝑡𝑛 are true negatives (correctly identified negatives),
𝑓𝑝 are false positives (Type I errors), and 𝑓𝑛 false negatives (Type II
errors).

The metrics are all presented as numbers in the range 0 to 1, and
are defined as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
(1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
(2)

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(3)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 + 𝑡𝑛
(4)

In plain language these can be thought of in the following terms:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of the answers returned, the proportion that are correct.

Table 5
Results for randomly generated training sets, with |𝑇 | = 300, evaluated against 𝐺 ⧵ 𝑇 .

Run 𝑡𝑝 𝑡𝑛 𝑓𝑝 𝑓𝑛 𝑝𝑟𝑒𝑐. 𝑟𝑒𝑐𝑎𝑙𝑙

1 261.0 765.0 79.0 24.0 0.768 0.916
2 264.0 777.0 67.0 21.0 0.798 0.926
3 248.0 782.0 62.0 37.0 0.800 0.870
4 253.0 779.0 65.0 32.0 0.796 0.888
5 257.0 767.0 77.0 28.0 0.769 0.902
6 259.0 777.0 67.0 26.0 0.794 0.909
7 253.0 783.0 61.0 32.0 0.806 0.888
8 257.0 777.0 67.0 28.0 0.793 0.902
9 259.0 770.0 74.0 26.0 0.778 0.909
10 260.0 774.0 70.0 25.0 0.788 0.912

Mean 257.1 775.1 68.9 27.9 0.789 0.902

𝑟𝑒𝑐𝑎𝑙𝑙 the proportion of the correct answers in the domain that are
found.

𝐹1 the harmonic mean of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙, provides a simple way
to combine them into a single value, such that poor performance
in either metric is visible in the 𝐹1 score.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of all the answers given, what proportion are correct.

The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 score can be misleading in the presence of unbalanced
classes [11] (e.g. more negatives than positives), which is generally
the case in patent classification, however it has been included here for
consistency with other work.

7. Naïve training set construction

For less challenging classification tasks accurate results can be
obtained by constructing a training set from a random subset of 𝑇⊕
and 𝑇⊖, and evaluating the classifiers built from these training sets
against 𝐺⧵𝑇 . However, from practical experience in the field it has been
discovered that this technique is not effective for patent classification
against commercially relevant topics.

Because of this it is expected that a similarly constructed training set
drawn randomly from 𝐺 will produce relatively low 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙
numbers, and this can be used as a test of the appropriate difficulty of
the classification challenge.

Anecdotally, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 scores (and hence 𝐹1) in excess
0.9 have been reported by end-users as being approximately equiva-
lent to results produced by manual search and review of patents by
skilled practitioners. Based on this we would expect to see a random
construction of training sets produce scores under this threshold for a
robust gold standard.

A series of 10 training sets were randomly constructed, such that
|𝑇⊕| = |𝑇⊖| = 150, thus |𝑇 | = 300. Classifiers as described in Section 9.1
were then trained against the random training sets. The confusion
matrices from evaluation against 𝐺 ⧵ 𝑇 were then calculated, and the
results can be seen in Table 5.

The value of 300 was chosen as a typical training set size, from
practical experience of patent technology classification, with manually
curated training sets.

From this we can see that, at least for this implementation, ran-
domly generated training sets do not produce a level of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 that
meets user expectations. This gives a degree of confidence that the task
presented by classifying the gold standard is not so trivial as to be
unrepresentative of real-world technology classifications.

It is interesting that the mean 𝑟𝑒𝑐𝑎𝑙𝑙 is just in excess of the 0.9
threshold, though the micro-average [12] mean 𝐹1 score for this test
is 0.842, suggesting that the overall perceived accuracy would be
insufficient.

The disparity between 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 scores for random train-
ing sets is substantial. In order to illustrate possible causes, a UMAP
dimensional reduction [13] was performed on the entire gold standard
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Fig. 1. UMAP dimensional reduction of 100 randomly selected positives (orange), and
100 randomly selected negatives (blue). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

data, using a pre-existing deep learning embedding10 of CPC class
codes. 100 positive, and 100 negative families were then selected at
random, and plotted in Fig. 1. The parameters used were 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 =
5, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 = 0.5, and the euclidean metric was used for distance
calculations.

This reduction gives some indication of why this may occur. The
positive points are mostly densely clustered in a small number of
locations in the space, whereas the negatives are more scattered. If this
is a meaningful representation of the information space, then it would
be hard for the classifier to define the boundaries of the space denoting
positive class, and will tend to be over-inclusive of positive results. This
would be a cause of the high 𝑟𝑒𝑐𝑎𝑙𝑙, but low 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.

With further work, it could be established if the process of following
the algorithm described in Section 8 also identifies negative points that
help to define the boundary in such a space.

8. Modelling real-world directed training

As we have shown, random construction of training sets does not
yield results that are either representative of practical experience,
or sufficiently accurate to be useful. Consequently it is necessary to
define a representative, repeatable, and fully algorithmic way to model
operator-directed construction of training sets, so that classification
accuracy can be evaluated in a robust manner.

The domain of interest can be characterised as per Fig. 2, where
𝑈 is the entire domain (all patents relevant to the subject of the gold
standard, whether positive or not), 𝑃 is the patents that are positive to
the class, 𝐾 is the patents that are currently known to the operator, or
will become known during the training process, and 𝑇 is the current
training set. By definition the training set must be a (non strict) subset
of the known patents.

From this we can define the sets:

𝑁 = 𝑈 ⧵ 𝑃 all negatives (5)

𝐸 = 𝐾 ⧵ 𝑇 evaluation set (6)

10 A description of the embedding is beyond the scope of this article, but
as it is simply used to illustrate the relationship between labels it is of little
consequence.

Fig. 2. Euler diagram showing sets of interest to the training process.

𝑇⊕ = 𝑇 ∩ 𝑃 training set positives (7)

𝑇⊖ = 𝑇 ∩𝑁 = 𝑇 ⧵ 𝑃 training set negatives (8)

The process of training a supervised learning classifier can be char-
acterised as moving patents from 𝐸 into 𝑇 in such a way as to increase
the extent to which 𝑇⊕ and 𝑇⊖ represent the characteristic differ-
ences between 𝑃 and 𝑁 , enabling the classifier to ‘‘learn’’ what those
differences are.

Hence, during a typical training process the operator follows the
following cycle:

1. Identify a small number of members of 𝑃 to form the initial 𝑇⊕ –
provided by an end-user, discovered by manual search, or some
combination

2. Identify a small number more-or-less arbitrary members of 𝑁 to
form the initial 𝑇⊖

3. Train the classifier on 𝑇
4. Apply the classifier to some subset of 𝐾
5. Correct the most obvious errors, adding to 𝑇
6. Repeat from 3., until the classifier evaluates to some success

criteria, such as 𝐹1 ≥ 0.9

In real-life situations the operator is a human expert, who is respon-
sible for training the classifier, in the algorithm described in this article
it is a software simulation of that operator, modelled as the selection
of new members of the training set based on highest log-loss.

The way this was modelled in software was to start with randomly
selected initial 𝐾, and 𝐻 sets, such that 𝐾∩𝐻 = ∅ and 𝑇 ∪𝐻 = 𝐺, where
the gold standard is 𝐺, and the holdout set is 𝐻 (representing 𝑈 ⧵ 𝐾
in the user-driven case). 𝑇 , the training set starts out with a balanced
random subset of 𝐾, and progressively acquires members from 𝐾 ⧵ 𝑇
to reduce errors observed in 𝐾. The pseudocode is given in algorithm
1.

In this way the data is divided into three portions - a randomly
selection withheld set (𝐻) that is purely used for testing, an initial
training set (𝑇 ), and the remainder which is used to augment the
training set (𝐸).

8.1. Selection of constants

The constants 𝛼, 𝛽, 𝛾, 𝛿 were given the values 100, 350, 286 and
5 respectively for this study. The choice of 𝛼, 𝛾, 𝛿 are chosen largely
for reasons of computational efficiency, and to match the scale of the
quantum computing gold standard, as described below.

Reducing 𝛼, the initial cardinality of 𝑇 , causes the evaluation scores
to be slightly higher in earlier iterations, and increases computational
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Algorithm 1 Training process
function sample(𝑆, 𝑛)

return round(𝑛) elements from shuffle(list(𝑆))
end function

function highloss(𝑆, 𝑛)
𝑙 ← list(𝑆), sorted by logloss, descending
return first 𝑛 elements of 𝑙

end function

𝐻 ← sample(𝐺⊕,
|𝐺⊕|

|𝐺|

𝛾) ∪ sample(𝐺⊖,
|𝐺⊖|

|𝐺|

𝛾)
⊳ hold out proportion, stratified sample

𝑇 ← sample(𝐺⊕ ⧵𝐻, 𝛼2 ) ∪ sample(𝐺⊖ ⧵𝐻, 𝛼2 )
⊳ initial training set, balanced sample

while |𝑇 | ≤ 𝛽 do
𝑓 ← train(𝑇 ) ⊳ train classifier
𝐸 ← 𝐺 ⧵ 𝑇 ⊳ define evaluation set
𝑟 ← 𝑓 [𝐸] ⊳ apply classifier to evaluation set
write(𝑟) ⊳ log confusion matrix
if precision(𝑟) ≥ recall(𝑟) then

𝑇 ← 𝑇 ∪ highloss(𝐸⊕ ⧵𝐻, 𝛿) ⊳ add 𝛿 positives
else

𝑇 ← 𝑇 ∪ highloss(𝐸⊖ ⧵𝐻, 𝛿) ⊳ add 𝛿 negatives
end if

end while

effort, though from some experimentation this effect on evaluation
scores did not appear to be substantial.

Increasing 𝛽, which governs the maximum cardinality of 𝑇 , and
hence the number of iterations, substantially increases the evaluation
time, and can have some negative impact on the selection of patents in
𝑇⊕, as discussed in Section 8.2.

𝛾, the cardinality of the held-out set was chosen as 0.2 |𝐺| – 20% of
the data, a typical proportion for this kind of evaluation.

Increasing 𝛿, the number of families added to 𝑇 in each iteration,
reduces the computational effort of evaluation, at the cost of decreasing
the resolution of the analysis of the rate of change of the metrics with
respect to training set size seen in Section 9. A value of 10 or 20
would be more representative of human-directed training, though some
experiments revealed that it does not materially affect the evaluation
results.

The conditional on precision and recall reflects the user choosing
to correct for false positives or false negatives, depending on which are
more apparent, and the function highloss(𝑆, 𝑛) reflects a user identifying
the most obvious errors, and correcting them. From analysing user
behavioural statistics of the Cipher system (see Section 9.1), it has been
observed that users tend to briefly focus on identifying runs of positives,
then runs of negatives, so this has been reflected in this process.

8.2. Limits of 𝛽

As |𝑇⊕| approaches |𝐺⊕ ⧵𝐻| the training set becomes equivalent to
a randomly generated one, due to the reduction in selection freedom
of the training model. Consequently, at some point the metrics for the
classifier will decrease with increasing training set size.

As we can see in Fig. 3, when |𝑇 | = 400, the available set of
positives (𝐺⊕⧵𝐻) that has been incorporated into 𝑇⊕ is around 58%. At
|𝑇 | = 500 the consumed proportion is 72%, significantly constraining
the selection that can be made from 𝑇⊕. This is due to the size of
the held-out set, and the tendency of the training set to be balanced
between ⊕ and ⊖, while the gold standard as a whole is not.

This effect could be attenuated by reducing |𝐻|, however this
methodology would then be a worse representation of the real-world
situation, as the unknown portion of data is typically substantial in

Fig. 3. Chart showing usage of families in gold standard as training set size increases,
‘‘Unassigned’’ is 𝐺 ⧵ (𝐻 ∪ 𝑇 ).

comparison to the size of the training set, and would reduce the
accuracy of the evaluation.

Consequently we limit 𝛽 to 350 for evaluation of this gold standard,
to minimise the impact of this effect. Further work would be required
to determine the exact significance of this factor. By observation, with
|𝐻| = 0.2 |𝐺|, 𝛽 = 350 the evaluation results appear to be unaffected for
this gold standard – 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 at |𝑇 | = 350 are greater than
or equal to those at |𝑇 | < 350, see Table 6. For future gold standards
other choices of 𝛽 may be required, to reflect differing cardinalities of
𝐺⊕ and 𝐺⊖.

It is not clear how much the reduction in the rate of change of
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 with respect to |𝑇 | is due to diminishing returns
from the increased data, and how much to the lack of choice in
candidate patents to add to 𝑇⊕. Further work would be required to
determine this.

8.3. Alternative algorithms

An obvious alternative would be to only evaluate against the 𝐻 set,
which gives the advantage of a constant evaluation set size. In order
to reduce the variance of the scores it was found that large values of 𝛾
were required, limiting values of 𝛽, as described in Section 8.2 to levels
where limits of values for 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 could be obtained. For
this dataset, and this implementation the combinations of 𝛽 and 𝛾 that
were evaluated also resulted in a high variance of the 𝐹1 score.

A much larger gold standard would reduce this effect, though
would introduce other issues. Commercially relevant technologies to
be classified tend to be relatively specific, and it is rare for examples
with tens of thousands of candidates for 𝑇⊕ to exist. Any such training
set is likely to be idiosyncratic, and not reflective of many real-world
tasks.

Additionally, this variant approach would not reflect what users
experience when evaluating classifier results — the results from 𝑈 ⧵ 𝑇
seen in the final output are a mixture of results that are not known to
the operator (𝐻), and ones that have been observed, though deemed
to be correct (𝐸).

8.4. Comparison to randomly selected training sets

Fig. 4 shows the difference in 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 for classifiers built
from randomly selected training sets (as in Section 7) and the directed
training algorithm described here, for the same classification engine.

The data in Fig. 4 is drawn from Table 5, and the source data for
Table 6.
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Fig. 4. Scatter plot of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙, for randomly selected training sets and
directed training sets, with |𝑇 | = 300.

As can be clearly seen, the directed training produces substantially
higher 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and higher 𝑟𝑒𝑐𝑎𝑙𝑙 for the same training set size.

The difference in mean 𝑟𝑒𝑐𝑎𝑙𝑙 between the methodologies of 6.1%
(0.956 and 0.901) may not seem substantial, however this reflects a
44.9% reduction in the False Negative Rate, from 0.098 to 0.044.

9. Evaluating Cipher’s classification AI

9.1. About Cipher

In the results that follow the TRAIN() function in the pseudo-
code is provided by the July 2019 version of the Cipher classification
algorithm, as described in this section.

Cipher11 is a commercially available strategic patent information
system, the key feature of which is the ability to use trained AI
classifiers to tag patent assets against defined technologies.

The classification system is based on an ensemble of learners, each
trained on embeddings generated from patent data.

Textual and medadata embeddings for model training are obtained
through a combination of domain specific normalisation and transfor-
mations, and a separately trained patent-specific language model.

Model parameters were typically obtained either through a random
or directed hyperparameter searches.

As the hyperparameters are determined algorithmically it is neces-
sary to perform a large number of iterations, to ensure representative
results.

9.2. Methodology and results

In order to obtain representative results, we executed algorithm 1,
a total of 200 times. This required 183 CPU-hours, when executed on
4.3 GHz Intel i7-7740X CPUs with NVIDIA GeForce GTX 1080 Ti GPU
accelerators.

The results of executing algorithm 1 are shown in Table 6, abbre-
viated to only show the results of every 5 iterations (5𝛿 increments to
|𝑇 |).

11 http://cipher.ai/.

Fig. 5. Means of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 with training set size, calculated over 200 runs
from random starting point, and with random held-out data.

Table 6
Result of testing Cipher against the quantum computing gold standard — mean over
200 runs, for every 5 iterations, with 𝛼 = 100, 𝛽 = 350, 𝛾 = 286, 𝛿 = 5.

Iter. |𝑇 | 𝑡𝑝 𝑡𝑛 𝑓𝑝 𝑓𝑛 𝑝𝑟𝑒𝑐. 𝑟𝑒𝑐𝑎𝑙𝑙 𝐹1 𝑎𝑐𝑐.

0 100 335.5 850.0 94.0 49.5 0.781 0.871 0.824 0.892
5 125 309.8 859.8 67.8 66.6 0.821 0.823 0.822 0.897
10 150 308.2 861.5 53.8 55.4 0.851 0.848 0.849 0.915
15 175 303.6 859.2 43.9 47.3 0.874 0.865 0.869 0.927
20 200 303.8 857.1 34.0 34.1 0.899 0.899 0.899 0.945
25 225 300.1 853.4 25.6 24.8 0.921 0.924 0.922 0.958
30 250 293.7 846.8 19.3 19.2 0.938 0.939 0.939 0.967
35 275 285.2 839.2 14.6 15.1 0.951 0.950 0.951 0.974
40 300 275.6 828.5 12.1 12.8 0.958 0.956 0.957 0.978
45 325 265.3 816.5 11.1 11.1 0.960 0.960 0.960 0.980
50 350 255.0 802.7 10.7 10.7 0.960 0.960 0.960 0.980

Note that the results in Table 6 and Figs. 5–7 are computed as
the micro-average of the confusion matrices from multiple runs, rather
than the macro-average [12]. This allows direct comparison of 𝐹1 and
Var(𝐹1).

Figs. 5 and 6 show the evolution of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1 and
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 as the training set grows.

9.3. Observations

We can see that the initial 𝑟𝑒𝑐𝑎𝑙𝑙 is much higher than 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 –
as expected from a random starting point, as observed in Section 7.
From this point 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 grows steadily, while 𝑟𝑒𝑐𝑎𝑙𝑙 reduces quickly
with respect to training set size, then increases as 𝑇 develops towards
a more optimal selection. Eventually 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 converge
around similar values, due to the balancing action of the training
simulation algorithm. This reduction in 𝑟𝑒𝑐𝑎𝑙𝑙 causes a corresponding
reduction in the 𝐹1 score in the range of 100 < |𝑇 | < 150.

As we can see, the ultimate 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1 of the Cipher
implementation are around 0.96, and these values are reached for
values of |𝑇 | = 300, or |𝑇⊕| ≈ |𝑇⊖| ≈ 150. This reflects anecdotal reports
from users who have trained the Cipher system against real-world
topics (such as the automotive taxonomy), and provides reassurance
that both the gold standard data, and the training simulation algorithm
are a reasonable reflection of real-world situations.

http://cipher.ai/
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Fig. 6. Means of 𝐹1 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 with training set size, calculated over 200 runs from
random starting point, and with random held-out data.

Fig. 7. Variance of 𝐹1 with training set size, calculated over 200 runs from random
starting point, and with random held-out data.

The ultimate 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is 0.98, though as discussed previously this
is not a robust measure for unbalanced sets.

One important aspect of classifier performance that is often under
reported is the variance of results over repeat runs with different
datasets [10]. The variance of the 𝐹1 score can be seen in Fig. 7, and
the distribution of 𝐹1 is rendered as a scatter plot in Fig. 8. As can be
seen from the plots, the variance is initially high (when the training set
is close to random), and converges on stable values as the training set
is increasingly optimally selected from the pool of available data.

10. Conclusion

Though this is early work on the analysis of this class of classi-
fication problem, the quantum computing gold standard appears to
be representative of real-world experience of classification of patents.

Fig. 8. Scatter plot of 𝐹1 against training set size, calculated over 200 runs from
random starting point, and with random held-out data.

The required training set sizes, and eventual accuracy of classification
match anecdotal evidence from real users, and statistically the data
resembles known-good training sets.

In so far as possible to this point we have addressed the criteria
presented in Section 3, though some remain for future work:

Scope Appears to be an accurate reflection of commercial practise,
though more evaluation would be beneficial.

Agreement The published data represents a single view, future work
includes obtaining blind reviews of the data by other practition-
ers. This could also be used to establish consensus, maximal, and
minimal classification targets.

Diversity of technology Currently only one technology is covered.
Future work includes adding further gold standards from differ-
ent industries.

Size of dataset The size of the dataset appears to be sufficient for
robust evaluation, whilst also being a representative technology.

Challenging Analysis of the behaviour of random training sets indi-
cates that the difficulty of analysis of this technology is compa-
rable with real-world classification tasks.

Independent The gold standard was created in the absence of an
algorithmic classification system, by a neutral third party.

Identification Data is published in the widely-used European Patent
Office format, with titles and dates available to aid cross-
checking.

The data for the quantum computing gold standard can be found
at https://github.com/swh/classification-gold-standard/tree/master/d
ata. It is made available under the BSD 3-Clause License, to allow reuse
in other projects in a variety of ways. The site includes documentation
for the file and data format the gold standard is represented in.

In the future, additional gold standard datasets will be published at
this location, to allow a more comprehensive analysis of the behaviour
of various patent classification algorithms, across multiple domains,
and created by different authors.
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Practitioners wishing to independently construct their own gold
standards following this method can apply the analysis in Section 2.2 to
determine if they are sufficiently independent of class codes, and apply
algorithm 1 with a series of classifiers in order to determine the spread
of metrics.

Future work includes the creation and analysis of further gold
standards, and the comparison of multiple classification algorithms to
determine the distribution of results.
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